

A manufacturer produces nuts and bolts. It takes 1 hour of work on machine A and 3 hours on machine B to produce a package of nuts. It takes 3 hours on machine A and 1 hour on machine B to produce a package of bolts. He earns a profit of Rs17.50 per package on nuts and Rs 7.00 per package on bolts. How many packages of each should be produced each day so as to maximise his profit, if he operates his machines for at the most 12 hours a day?

ABLES® KOTA

There are two types of fertilisers F_1 and F_2 . F_1 consists of 10% nitrogen and 6% phosphoric acid and F_2 consists of 5% nitrogen and 10% phosphoric acid. After testing the soil conditions, a farmer finds that she needs at least 14 kg of nitrogen and 14 kg of phosphoric acid for her crop. If F_1 costs Rs 6/kg and F_2 costs Rs 5/kg, determine how much of each type of fertiliser should be used so that nutrient requirements are met at a minimum cost. What is the minimum cost?

		FX	f2	at least!
(FI-) or Kg+	N2	b7.	5%	7 20 11
by yky	P.A.	6%	10/	min P. Fl. 3/14
				12 = 6xx(+5xy)

2 IDUCE ROTA
Brun D:- 17 70 140 -> put (0,0) in (D: - 07/280-) False -1 9way Born
F1(9) F2(5) 353 7 140 0
Point Z
(N2) 10%. 5%. Brum @: 37 35%3 0 280 E 1400
1 (0,10), 0,1100-1400 A
So! 9789 away Bown(90) 2100 (21010) 2 = 1260
Cost 6 Ps/14 5 Psy: Hone The region is
Let: - Quentity of Fi = 37 kg. 1.6m + 54 5 1000
— II— Id— II G
80 mini Cos1:-> 2 = 67 + 59 / 4 80 900
:: Nz in both F, & Fz is ablest 14 kg.) at (0,0) 70 (36) 210 280
: loyper + 5% of 4 > 14
: 10x 0x 2x + 5x 0x 4 > 14 True - 1
11-24-24 > 14 cm
(1) (1) (1) (1)
So Min. Cost = lovo at (100,80)
Similarly: 7(X6%+ YX10). >14 (37+57>,700) of means - looky F, & 80 kg Fa is produced
Similarly: -1 (37 + 1/4 10) > 14 (37+57>700) of meany -> looky F, & 80 kg Fa is produced